Code: 11FYPO2 Surface Physics 2
Lecturer: doc. Ing. Ladislav Kalvoda CSc. Weekly load: 2+0 Completion: EX
Department: 14111 Credits: 2 Semester: S
Description:
1. Surface properties. Repetitorium of QM approach to bulk crystalline solids case of bulk materials and modifications caused by introduction of a surface. 2. Surface and the jellium model. Bloch waves and a 'step' potential. 3. Molecular orbital approach to surface states. Limiting cases of electronic surface states. 3. Surface phonons. Surface plasmon polaritons. 4. Experimental characterization of surface electronic and vibratory properties. Electronic work function. Contact potential. 5. Surface charge and electronic band bending. Semiconductor super-lattices and electronic mini-bands. 6. Preparation and properties of magnetic multi-layers. 7. Electron Energy Loss Spectroscopy (EELS): Principle, instrumentation and applications.8. Adsorption at surfaces: Physisorption, chemisorption, interactions between adsorbates, surface segregation. 9. Kinetics of adsorption and desorption. Surface chemical reactions and catalysis. 10. Coverage and ultra-thin layers. Modes of thin crystalline layer growth. 11. Experimental methods of thin layer fabrication. Physical vapor deposition (PVD). Chemical vapor deposition (CVD). 12. Principles and applications of molecular beam epitaxy (MBE). 13. Liquid phase epitaxy (LPE). Langmuir-Blodgett technique (LBT).
Contents:
1. Surface properties. Repetitorium of QM approach to bulk crystalline solids case of bulk materials and modifications caused by introduction of a surface. 2. Surface and the jellium model. Bloch waves and a 'step' potential. 3. Molecular orbital approach to surface states. Limiting cases of electronic surface states. 3. Surface phonons. Surface plasmon polaritons. 4. Experimental characterization of surface electronic and vibratory properties. Electronic work function. Contact potential. 5. Surface charge and electronic band bending. Semiconductor super-lattices and electronic mini-bands. 6. Preparation and properties of magnetic multi-layers. 7. Electron Energy Loss Spectroscopy (EELS): Principle, instrumentation and applications.8. Adsorption at surfaces: Physisorption, chemisorption, interactions between adsorbates, surface segregation. 9. Kinetics of adsorption and desorption. Surface chemical reactions and catalysis. 10. Coverage and ultra-thin layers. Modes of thin crystalline layer growth. 11. Experimental methods of thin layer fabrication. Physical vapor deposition (PVD). Chemical vapor deposition (CVD). 12. Principles and applications of molecular beam epitaxy (MBE). 13. Liquid phase epitaxy (LPE). Langmuir-Blodgett technique (LBT).
Seminar contents:
N/A
Recommended literature:
Key references: ^^[1] M. Prutton, Introduction to Surface Physics, Clarendon Press, Oxford 1998. ^^Recommended references: ^^[2]. J.M. Zimman: Principles of the Theory of Solids, 2nd ed., Cambridge Univeristy Press 1999.
Keywords:
Surface; thin film; superstructure; multilayer; properties; electronic structure; phonon states; methods of preparation of thin layers.

Abbreviations used:

Semester:

Mode of completion of the course:

Weekly load (hours per week):