 Description:

The lecture describes the birth of quantum mechanics and description of one particle and more particles by elements of the Hilbert space as well as its time evolution. Besides that it includes description of observable quantities by operators in the Hilbert space and calculation of their spectra.
 Contents:

1. Experiments leading to the birth of QM
2. De Broglie's conjecture, Schroedinger's equation
3. Description of states in QM
4. Elements of Hilbert space theory and operators
5. Harmonic oscilator
6. Quantization of angular momentum
7. Particle in the Coulomb field
8. Mean values of observables and transition probabilities
9. Time evolution of states
10. Particle in the electromagnetic field. Spin
11. Perturbation methods
12. Many particle systems
13. Potential scattering, tunnel phenomenon
 Recommended literature:

Key references:
[1] P.A.M. Dirac, Principles of Quantum Mechanics, Oxford University Press,
Oxford 1958.
Recommended references:
[2] L. D. Faddeev and O. A. Yakubovskii: Lectures on Quantum Mechanics for Mathematics Students (Student Mathematical Library), AMS 2009.
 Keywords:
 quantum mechanics, Hilbert space, wave function, probability prediction
Abbreviations used:
Semester:
 W ... winter semester (usually October  February)
 S ... spring semester (usually March  June)
 W,S ... both semesters
Mode of completion of the course:
 A ... Assessment (no grade is given to this course but credits are awarded. You will receive only P (Passed) of F (Failed) and number of credits)
 GA ... Graded Assessment (a grade is awarded for this course)
 EX ... Examination
 A, EX ... Examination (the award of Assessment is a precondition for taking the Examination in the given subject)