Code: 01ZTGA Introduction to Graph Theory A
Lecturer: prof. Ing. Edita Pelantová CSc. Weekly load: 4+0 Assessment: ZK
Department: 14101 Credits: 4 Semester: W
The course provides a coherent explanation of modern graph theory, some applications are discussed.
1) Basic notion of graph theory
2) Edge and vertex connectivity (Menger Theorem)
3) Bipartite graphs
4) Trees and forests, cutting edges
5) Spanning trees (Matrix-Tree Theorem)
6) Euler tours and Hamilton cycles
7) Maximal and perfect matching
8) Edge coloring
9) Flows in networks
10) Vertex coloring
11) Plannar graphs (Kuratowski theorem)
12) Spectrum of an adjacency matrix
13) Extremal graph theory
Recommended literature:
[1] J.A. Bondy, U.S.R. Murty. Graph theory.
Graduate Texts in Mathematics 244. Springer, New York, (2008).

Recommended references:
[2] R. Diestel. Graph theory.
Graduate Texts in Mathematics 173. Springer-Verlag, Berlin, (2005).
[3] L. Lovasz, M.D. Plummer. Matching Theory. North-Holland Publishing Co., Amsterdam, (1986).
Graph theory.