Code: BE2M34VKE Power Electronics
Lecturer: prof. Ing. Pavel Hazdra CSc. Weekly load: 2p+2l Assessment: Z,ZK
Department: 13134 Credits: 5 Semester: S
Description:
The course introduces into the problematic of power electronics. First part of lectures deals with principles and structures of contemporary semiconductor power devices. The impact of novel semiconductor materials is discussed, as well. Circuit models of particular devices will be then explained, driving circuits, switching of the resistive, inductive and capacitive loads, power losses and device operation reliability will be thoroughly discussed. Second part of lectures is dedicated to the problematic of power converters, their topologies, control techniques and circuits. Electromagnetic compatibility and PCB design for power converters will be discussed, as well.
Contents:
1. Introduction to power electronics, Physical principles, Semiconductor materials (Si, SiC, GaN. etc.)
2. Power diodes: rectyfiyng and fast-recovery diode. Silicon versus Silicon Carbide.
3. MOSFETs and IGBTs. Comparison of structures and properties.
4. Thyristors: Phase Controlled Thyristors (PCT), Gate Turn-Off and Integrated Gate-Commutated Thyristors (GTO, IGCT).
5. Power modules, integrated structures and circuits.
6. Compact models of power devices and basic circuits elements.
7. Driving power electronics switching devices, parasitic capacitance and leakage inductance.
8. Switching resistive, inductive and capacitive loads, HSS, LSS and bridge configuration.
9. Power dissipation and thermal resistance.
10. Operating reliability of power devices.
11. Power converter topologies (VSI, LCI, MMC)
12. Introduction to power converters control techniques
13. Control circuits for power converters, load regulation
14. PCB guidelines for power converters
Recommended literature:
[1] B. Jayant Baliga : "Fundamentals of Power Semiconductor Devices", Springer, 2008
[2] R. Perret, "Power Electronics Semiconductor Devices", John Wiley, 2010
[3] A. Ioinovici, "Power Electronics and Energy Conversion Systems", Wiley, 2012
Keywords:
Power electronics, electron devices, power converters